家庭防疫消毒慎用紫外线设备******
消毒是阻断病毒传播的有效方式之一。近日,随着新冠病毒感染者居家隔离人数的增多,如何有效地消毒成为热议话题。有公众提出,紫外线消毒杀菌率高达99%,用于降低新冠病毒传染致病性0.3秒的时间就足够了。
那么,这种观点是否正确?家庭防疫,用紫外线消毒设备是否靠谱?
深紫外波段可实现杀菌灭活
紫外线位于光谱中紫色光之外,为不可见光。在日常生活中,人们经常利用紫外线杀菌消毒,例如在太阳底下晒被子就是典型的利用紫外线消毒的例子。
中国科学院半导体研究所研究员闫建昌告诉科技日报记者,紫外线可以根据波长,由长到短划分为UVA、UVB、UVC三种波段。由于紫外线的波长与光子能量成反比,因此当紫外线的波长越短时,其光子能量越高,相应的杀菌消毒能力就会越强。
“UVA波段指波长在320—400纳米的紫外线,平时生活中照射到地表的紫外线,大部分是UVA波段,它有一定的抑制细菌的能力。UVC波段指波长在200—280纳米的紫外线,也被称为深紫外波段,这一波段的紫外线能够破坏细菌或病毒的DNA与RNA链条,使其失去复制或繁殖的能力,从而真正实现有效地杀菌灭活。”闫建昌说。
闫建昌认为,正确地使用紫外线可以消灭新冠病毒,但0.3秒内即可降低新冠病毒传染致病性,这种说法并不严谨。
“能否较快较好地消灭病毒,主要是看紫外线的剂量。紫外线的剂量受到紫外线的光功率,即单位面积上光能量大小的影响。同样波长下的紫外线,光功率越高,紫外线的剂量越大,杀菌的时间自然会越短。因此,只有在足够强的光功率下,才有可能实现0.3秒消杀新冠病毒。”闫建昌说。
中国疾控中心环境所研究员沈瑾也指出,一般情况下,传统的紫外线灯消毒作用时间为半小时,尽管近年来紫外线技术有新的发展,但目前还没有系统的、权威的研究或报道显示,0.3秒的时间就可以达到消毒的效果。
紫外线消毒灯存在安全隐患
深紫外波段的紫外线具有较强的杀菌效果。那么在家庭防疫中,用紫外线消毒灯进行消毒是否是一个靠谱的选择?
原武钢二医院外科主任医师、武汉科技大学医学院外科学兼职教授纪光伟指出,紫外线和其他光一样,沿直线传播,穿透能力较差。如果有遮挡物,紫外线消毒灯的杀菌效果就会大打折扣。同时,紫外线消毒灯还存在安全隐患。深紫外波段能够消灭病毒,也能损害人体细胞。“如果使用不当,可能会灼伤眼睛或皮肤,增加患眼部疾病和皮肤癌的风险。”纪光伟说。
此外,闫建昌还指出,当紫外线的波长短于240纳米时,会在空气中激发出臭氧,如果没有及时通风,当臭氧达到一定浓度时,会对呼吸道造成损害。目前在民用和工业领域消毒杀菌应用的深紫外光源大多是汞灯,使用汞元素作为核心发光材料。如果意外破损可能会造成汞泄漏,危害人体健康。
家庭防疫应采取何种消毒方式
除了紫外线消毒灯,一些家用空气消毒机和手持式的LED消毒器也应用了紫外线杀菌技术。据闫建昌介绍,这两种设备具有相对较高的安全性。
“应用了紫外线杀菌技术的空气消毒机,其紫外线的作用环境在消毒机内部,不会存在照射到人的风险。同时,这类产品在上市之前,还需要做紫外线泄露的相关检测,能够保证安全性。”闫建昌说,“LED紫外线手持消毒器紫外线的光功率较低,手持的操作方式也相对安全。同时,部分消毒器还具有红外传感等功能,如果检测到人会停止工作。”
除了紫外线消毒设备外,家庭防疫还可以使用酒精和含氯的消毒液。
纪光伟告诉记者,75%的酒精可以消灭新冠病毒。日常生活中,可以采用涂抹酒精的方式对物体表面进行消毒。“切忌在空气中喷洒酒精消毒,以免遇火而引起火灾。在使用酒精时,还需要避开明火。”纪光伟说。
在含氯的消毒液中,较为常见的产品是84消毒液。纪光伟表示,84消毒液以次氯酸钠为主要成分,物表消毒的浓度一般为3%,具体配比要按照说明书进行操作。在配比完成后,最好采用涂抹的方式进行物表消毒,或直接用消毒液拖地。完成消毒后,需要等待一段时间,再用清水擦拭,去除多余的消毒液。
最后,在居家防疫中,还要避免过度消毒。纪光伟表示,常温条件下新冠病毒在大部分物品表面存活时间较短。在患者居家期间,应加强室内通风,主要做好重点区域,例如共用卫生间和共用物品的消毒。
“我们生活在一个充满微生物的环境中,除了有害的微生物外,还有一些对我们健康有益的微生物。频繁消毒,会影响家里正常菌群的平衡,甚至导致疾病的发生。”纪光伟说。(记者苏菁菁)
人工智能应用于更多领域 计算机研究深入光电结合******
英国科学家在人工智能(AI)领域取得多项突破,包括用AI首次控制核聚变、用AI预测蛋白质结构等。“深度思维”与瑞士洛桑联邦理工学院合作,训练了一种深度强化学习算法来控制核聚变反应堆内过热的等离子体并宣告成功,有助加速无限清洁能源的到来。“深度思维”凭借“阿尔法折叠”算法,预测了迄今被编目的几乎所有2亿多个蛋白质的结构,破解了生物学领域最重大的难题之一,有助于应对抗生素耐药性,加速药物开发并彻底改变基础科学。该公司研发的“DeepNash”(深度纳什)学会了在“西洋陆军棋”游戏中,使用虚张声势等欺骗手段来击败人类对手。该公司AI创建的高效数学算法能解决矩阵乘法问题。该公司AI通过模拟数十年足球比赛的情况,学会了熟练地控制数字代理足球运动员,其建模的“AI代理”可与其他人工代理沟通合作,在玩游戏时共同制定计划。
牛津大学研究显示,AI能模拟条件反射进行联想学习,比传统机器学习算法快千倍。利兹大学科学家借助AI扫描视网膜以探知心脏病风险。
在计算机相关领域,牛津大学研究人员开发了一种使用光偏振来实现最大化信息存储密度的设备,其计算密度比传统电子芯片提高了几个数量级。南安普顿大学工程师则与美国科学家携手,设计了一种与光子芯片集成的电子芯片并创造出一种设备,能以超高速传输信息同时产生最少的热量。
在机器人领域,利兹大学团队开发了一种“磁性触手机器人”,直径只有2毫米,可由患者体外的磁铁引导进入肺部狭窄的管道采样。帝国理工学院科学家展示了一组受动物启发的飞行机器人,可在飞行中建造3D打印结构,未来有望用于在偏远地区建造房屋或重要基础设施。格拉斯哥大学科学家将由砷化镓制成的微型半导体打印到柔性塑料表面,所得设备的性能可与目前市场上最好的传统光电探测器媲美,且能承受数百次弯曲,可用作未来机器人的智能电子皮肤。苏格兰科学家开发出了一种先进的压力传感器技术,有助于改进机器人系统,如用于机器人假肢和机械臂。(科技日报记者 刘霞)
(文图:赵筱尘 巫邓炎)